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ABSTRACT

Response surface methodology is a useful way to study the relationship

between an experimental response variable and a set of continuous explanatory

variables. In designing a response surface study, an experimenter must decide

how far apart to set the levels of each factor; i.e., how to scale the

design. Two conflicting influences must be considered: i) if the levels are

too close together, estimates of the response will have high variance, but

(ii) if the levels are too far apart, large bias errors may be introduced. We

propose a design criterion based on a Bayesian model that makes explicit

assumptions about the possible extent of bias and show that the criterion

leads to reasonable choices of scale for 2k
-p factorial designs. The choice

of scale is found to be insensitive to the prior distributions in the model.

AMS (MOS) Subject Classifications: 62F15, 62K15

Key Words: Response Surface Design, Factorial Experiments, Design Scale;
Model Robust Design; Bayesian Models.

Work Unit Number 4 (Statistics and Probability)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-8210950.

- . - --&- -~

- I U I I I



[I --

SIGNIFICANCE AND EXPLANATION

In response surface methodology, carefully designed experiments are used

to study the relationship between an experimental response variable and a set

of continuous explanatory variables. The experiments are designed to permit

estimation of the parameters of a simple graduating function which, it is

tentatively assumed, will provide a reasonable approximation to the true

response function. These designs usually involve only a few levels of each

explanatory variable, so the experimenter must decide how far apart to choose

the levels. If the levels are too close together, estimates from the model

will have high variance, but if the the levels are too far apart, the

graduating function may no longer adequately approximate the true response

function, leading to large bias errors. An effective resolution of these

conflicting demands must depend on the experimenter's beliefs as to the

adequacy of the graduating function. Bayesian statistical methods allow us to

formulate a model that includes explicit assumptions about the experimenter's

beliefs. WL- formulatej n experimental design criterion based on such a model

and sttu* the implications of the criterion for scaling two-level factorial

experiments, which are often used when the graduating function is a first
/,

degree polynomial. W show that the criterion leads to reasonable choices of

scale that are not highly sensitive to the experimenter's beliefs.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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MODEL ROBUST RESPONSE SURFACE DESIGNS:
SCALING TWO-LEVEL FACTORIALS

David M. Steinberg

1. INTRODUCTION

Response surface methodology presents a systematic approach to

investigate the relationship:

E(Y) - g(X1, ....,Xk) (1.1)

between the expected value of an observed experimental response Y

and continuous explanatory variables X, ..... ,Xk. At the initial

stages of a response surface study, it is common to assume that a

first-degree polynomial:

k

E(Y) 0 + I iXi .  (1.2)
i-i

will provide an adequate approximation to the true response function

(1.1), at least in an immediate region of interest. (It is assumed

in (1.2) that the explanatory variables have been standardized by

the experimenter to reflect the region of interest.) Two-level

factorial or fractional factorial designs are typically used to

estimate (1.2) (see Box, Hunter, and Hunter 1978, Chapter 16).

The problem we consider here is how to select the factor levels

in a 2 k-p response surface experiment, i.e., how to scale the

design. The choice of scale has important implications for accurate

estimation of an unknown response function. If the design points

are moved far apart, (1.2) may lead to badly biased estimates of

gi on the other hand, if (1.2) is a good approximation to g and

the design points are close to the origin, the estimates will have

high variances. Our goal in choosing the scale will be to find

Sponsored by the United States Army under Contract No. DAAG29-80-
C-0041. This material is based upon work supported by the National
Science Foundation under Grant No. MCS-8210950.



designs that permit accurate estimation of the true response

function (1.1) and yet are robust with respect to uncertainty about

the functional form of (1.1). Rather than recommending a single

"optimal" design, we will suggest a range of reasonably efficient

designs. Other criteria might then be used to select a design from

this range (see, for example, the list in Box and Draper 1975).

The problem of choosing scale has attracted only scant

attention. Rather, most work on experimental design has assumed a

fixed design region and then considered how best to allocate the

experimental runs within that region. In particular, applications

of the theory of optimal design have followed this approach (see,

for example, Galil and Kiefer 1977, Pesotchinsky 1978) as have

applications of computer-aided design (Mitchell 1974, Mitchell and

Bayne 1978, Galil and Kiefer 1980, Welch 1982). Box (1982)

criticized the relevance of these studies for response surface

experiments, where the experimenter typically has only a vague idea

of the limits of the experimental region. In particular, Box (1982)

took issue with the conclusion of these studies that many runs

should be made at the extreme limits of the design region where an

approximate model like (1.2) is most likely to suffer from bias.

Our approach reverses the above scheme by considering the allocation

to be fixed and then examining how to scale the design. We think

that the latter situation is the one actually faced in designing

response surface experiments.

Our approach to model robustness is similar to that of Box and

-2-
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Draper (1959), who studied the effect of model misspecification on

the design of response surface experiments. They assumed that the

true response function could be written as:

g(x) = fl'(X)0 1 + f2 '(x)B 2, (1.3)

where f1'1  corresponds to (1.2) and f2 '02  represents bias due

to quadratic terms. They found that designs which minimize mean

squared error for (1.3) are quite similar to those which minimize

bias, and showed that minimum bias designs could be found by

appropriately scaling the design. Box and Draper (1963) extended

their analysis to quadratic approximating functions subject to bias

from third degree terms, with similar conclusions. The model form

(1.3) introduced by Box and Draper (1959) has proven to be a popular

paradigm for investigating model robustness in experimental

design. It has reappearred in work by Kussmaul (1969), Stigler

(1971), Atkinson (1972), and Jones and Mitchell (1978). All of

these papers, however, differed from the original work by Box and

Draper in that they assumed a fixed design region and studied the

question of allocation.

Any solution to the scaling problem must depend on the

experimenter's beliefs as to the ability of (1.2) to approximate

q. Our solution is to adopt a Bayesian approach that allows us to

make explicit assumptions, in terms of prior distributions, about

the adequacy of (1.2) as an approximation to (1.1). Not

surprisingly, our recommendations for scaling the design depend on

the prior distribution that is used, but a sensitivity analysis

-- 3 --
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shows that they are quite robust with respect to the prior. In

Section 2 we describe a Bayesian analogue of (1.3) and in Section 3

we give some results regarding the precision of estimates based on

the model. In Section 4 we propose a criterion for experimental

design that is similar to a criterion proposed by O'Hagan (1978) and

generalizes a criterion suggested by Wahba (1978). In Section 5 we

give results for applying the criterion to 2k-p designs. In

Sections 6 we examine the implications of the design criterion for

2k
-P designs with 4, 8, and 16 factorial runs and one or more center

replicates. A discussion of the results is given in Section 7.

2. A BAYESIAN MODEL FOR RESPONSE SURFACES

Suppose we observe experimental data

Y= g(xi) + Li (2.1)

where the £i are i.i.d. random errors with normal (0,a2)

distributions. Following Box and Draper (1959), suppose the true

response function g(x) can be represented as:

k
g(x) - 00+ 1 0 1X + eiW.(2.2)

j=1 in

The second summation includes bias due to higher-degree terms and is

analogous to the second term in (1.3). We will adopt Young's (1977)

suggestion to use orthogonal polynomials for the higher-degree terms

rather than simple products of powers. In particular, we will use

tensor products of Hermite polynomials, Hi(t), standardized to

-4-



have square integral of unity with respect to a normal(0,1)

distribution on the real line. Thus (2.2) includes all functions of

the form:
k
nHji (Xi)

i-i

where H is the one-dimensional Hermite polynomial of degree J.

We will represent the prior belief that a first-degree

polynomial is likely to be an adequate approximation to g by

assigning uninformative prior distributions to the elements of i

but proper priors to the 0i that constrain these coefficients to

be small. Specifically, we assume that:

B N(O,V) (2.3a)

ei N(0,Ta2wd(i)) (2.3b)

where the Si are independently distributed, d(i) is the degree

of the corresponding polynomial in (2.2), w e [0,1) is a parameter

that specifies the rate at which higher-degree terms are discounted,

and T e [0, -) is a measure of the overall extent of bias relative

to experimental error. We will make (2.3a) into an uninformative

prior by considering limits as V- + 0, as in Lindley and Smith

(1972). The assumption that the 8i are independently distributed

does not seem unreasonable because of the orthogonality of the

regression functions.

-5-
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3. POSTERIOR VARIANCES

For the Bayesian model (2.2)-(2.3), a natural measure of

estimation accuracy is the variance of the posterior distribution

of g(z), Varjg(x)/Yj, which we will call estimation variance.

The following theorem from Steinberg (1984b) describes the posterior

distribution of g(z).

Theorem 1: Let xi be a kxl vector that lists the factor

settings for the ith experimental run. Let

f'x =(X 1 . . . .. . . .,Xk)

and let X be the nx(k+1) matrix whose ith row is lx.

(Primes denote vector or matrix transposes.) Define:

R(u,v) To w d~)gi(U) gi(v)i (3.1)
i=o

r'C)=(R(x,X 1 ) ........ .. ,R(Z,zn) ) and

Rnxn =(R(xixj))i~j.

we will assume that X has full column rank and that the model

(2.2)-(2.3) holds with an uninformative prior assigned to 8

Then g~z) has a normal posterior distribution with:

Eig(x)/Yf - f'(x)(X' 1 1X) 1 I'NlY (3.2)

Varjg(x)/Yj a o2 tf'(x)(X'H-1 X)-1 f(x) + TR(x,z) (3.3)

T 2 r' (z)[Ii 1 - NC'X('N 1 1) 1 X'K- 1Ir(x)I.

where H I + TR.

-6-



For the Hermits polynomial expansion of g described in

Section 2, we can obtain a closed form solution for (3.1) by

slightly modifying (to account for the standardization and the

exclusion of the constant and linear terms) Mehler's formula (see

Watson 1933):

exp{-(u-v) (u-v)w2 /2(1-w 2 ) + u' w/(1+w) }
R(U,V) = 2-k/2 1-wuv.

(1 - w
(3.4)

The estimation variance (3.3) is independent of the observation

vector Y and is proportional to a2, but is a rather complicated

function of the experimental design and the prior parameters T

and w. We can, however, state some general properties:

1. If x is a design point, then Varig(x)/TJ 4 a2 . This property

follows from the fact that conditioning only on the observation made

at x would give us an estimation variance of 02; conditioning on

the remaining observations can only decrease the estimation

variance. Thus a minimal degree of accuracy can always be assured

at any point by taking an observation there. In general, the

estimation variance at a point x is decreased when observations

are made near x, but may remain almost unchanged if observations

are made at distant factor settings. This property is in sharp

contrast to the standard conclusion that the variance at x can

sometimes be minimized by taking observations far away from x.

Vartg(x)/T} is a monotone increasing function of both T and

w, the prior parameters that state the extent of bias in the model,

-7-



and is often approximately linear in T. Not surprisingly, positing

a model with more bias leads to a degradation in the precision of

the estimates.

3. Setting either T - 0 or w = 0 eliminates the bias term from

the model and (2.2)-(2.3) states that the first degree polynomial is

believed to be an exact representation of the response function.

The estimation variances in this situation are exactly those that

would be obtained from a conventional ordinary least squares

analysis of this model. Thus ordinary least squares, by failing to

account for the approximate nature of models such as (1.2), can lead

to an unduly optimistic assessment of estimation variance.

4. The increase in estimation variance from including bias in the

model is especially pronounced outside the range of the data. The

Bayesian model agrees with common sense pessimism about the ability

to extrapolate from an empirical graduating model.

To illustrate the above comments, and to provide additional

insight into the nature of estimation variance for models that

explicitly include bias, we consider briefly the estimation

variances that result from a 23 design under various prior

specifications and with different choices of scale. We will assume

throughout that 02 = 1.

Figure 1 presents estimation variances for points on one of the

coordinate axes when the factors are set at ±1 for five different

priors. The lowest line (T - 0) gives the ordinary least squares

estimation variances. The other priors range from slight bias

-8-



(T - 1/8, w = 0.2) to moderate bias (T = 1, w - 0.4). The Bayesian

estimation variances, although monotone increasing, are relatively

flat within the range of the data (i.e., through 1 on the

horizontal axis) but increase sharply outside the range of the data.

Figure 2 shows the effect of design scale by graphing the

estimation variance functions for a 23 design with factors at i1

and a 23 design with factors at ±2. In each case, the prior

parameters are T - 1 and w - 0.2. Two slices of the estimation

variance function have been plotted for each design, one

corresponding to points on a coordinate axis and the other to points

on a diagonal of the cube (i.e., points of the form (t,t,t)). In

both cases, estimation variance has been plotted against the

distance of the point from the origin. It is clear from Figure 2

that using the smaller scale setting provides much better precision

at the origin at the expense of high estimation variances outside

the sphere of radius 31/2 on which the design points are situated.

Increasing the design scale permits improved precision across a

wider range of values. For points on a coordinate axis, precision

is reasonably stable for points within the design cube (i.e., no

more than 2 units from the origin). Similar conclusions hold for

points along a diagonal. The increase in precision between 2.5 and

3.5 units from the origin corresponds precisely to the design point

at 3.46, where the estimation variance must be less than 1. Beyond

the design point, estimation variance increases rapidly.

-9-
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4 A BAYESIAN DESIGN CRITERION

The most direct way to use the Bayesian model of Section 2 to

compare two experimental designs is to compare their estimation

variance functions. Such comparisons are difficult, however,

because a design that provides precise estimation in some regions

may be uninformative in others. The purpose of a design criterion

is to provide a simple means of comparison by giving a numerical

summary of the estimation variance function across the entire design

region. For our criterion, we define the average weighted

estimation variance (AWEV) for an experimental design by:

AWEV = f Varjg(x)/Y} w(x) dx, (4.1)
X

where X denotes the design region and w(x) is a probability

density function on X. The p.d.f. w(x) serves as a weight

function that reflects the experimenter's interest in different

regions of the factor space. Thus AWEV amounts to the expected

preposterior loss associated with a (pointwise) squared error loss

function and the specified weight function.

The numerical value of the AWEV criterion will, of course,

depend on the prior beliefs of the experimenter as to the nature of

the response function (i.e., in the case of (2.2)-(2.3), the prior

parameters T and w). This value is of interest in itself, since

it summarizes the precision of the estimates that can be made with

the model. For comparing designs, however, it is often preferable

- 12 -
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to look at relative values of AWEV for fixed prior distributions.

Denoting by S the class of all designs that are under

consideration, we define the percent efficiency of a design D e

by:

PE(D) - min AWEV(E) / AWEV(D)J (100%) (4.2)
E

Percent efficiency enables us to study questions of robustness with

respect to the prior by comparing the efficacy of a particular

design across a range of possible priors. Since we do not believe

that many experimenters would be able to state unequivocally a prior

for (2.2)-(2.3), it is quite important to know how sensitive the

choice of design is to the prior specification.

The AWEV criterion is similar to the Bayesian design criterion

proposed by O'Hagan (1978), who was also motivated by the problem of

scaling experimental designs. O'Hagan's model, although written in

a different form than the model in Section 2, is in fact closely

related to it (see Steinberg 1984a) and leads to estimation

variances of a similar form. The only real difference between

O'Hagan's model and that described in Section 2 is the covariance

function that corresponds to our (3.4). A problem with O'Hagan's

covariance function is that for designs with four or more points,

estimation variances are bounded from above even if two of the

points are arbitrarily remote from the region of interest (see

Steinberg 1983). O'Hagan's design criterion differs from (4.1)

because he did not use estimation variance. Instead, he defined a

new estimator of the response function which approximates the

-13-



posterior expectation estimate (3.2) by a simple parametric

function. He defined his design criterion to be the average

(weighted) mean squared error of this estimate of g(x) which, in

turn, can be decomposed into a posterior variance term (AWEV) and a

posterior squared bias term that results from using the simple

parametric estimate instead of the posterior mean.

A design criterion even closer to AWEV was proposed by Wahba

(1978) in the discussion of O'Hagan (1978). Wahba's criterion, in

the notation used here, is:

( / O2) E [g(x) _ ;(z)J2w(x) dx, (4.3)

where g(x) is the posterior expectation of g(x) and g has a

prior distribution as in (2.2)-(2.3) but with proper priors assigned

to all the regression coefficients. Fubini's Theorem then justifies

interchanging the expectation and integration in (4.3) and, noting

that Ejg(x)} = EEJg(x)/YJ = g(z), we see that (4.3) is

proportional to (4.1). The two criteria are not equivalent,

however. If we assign improper priors to the coefficients in the

graduating polynomial, Wahba's criterion (4.3) becomes undefined

because g(x) no longer has a formal probability distribution. The

posterior distribution of g(x) does exist, however, (provided XIX

is non-singular), so that the AWEV criterion can be applied in

either instance and might be viewed as a generalization of Wahba's

criterion.

Wahba's criterion (4.3) is reminiscent of ideas used in

numerical analysis for the evaluation of functional approximation

- 14 -



techniques, in which the "closeness" of an approximation g(x) to a

function g(x) is measured in terms of a norm, such as the average

weighted squared difference used above (see, for example, Conte and

De Boor 1980, Chapter 6). Since the norm here is stochastic, some

summary measure of its distribution must be used; (4.3) summarizes

the distribution via its expected value. Thus the AWEV criterion

(4.1) can be justified on numerical analytic, as well as

statistical, grounds.

Calculating AWEV

Direct computation of AWEV is likely to be intractable in most

situations, but a simple identity greatly facilitates the task.

Substituting (3.3) into (4.1) gives AWEV as a sum of terms of the

form:

f u'(z) a v(z) w(x) dx, (4.4)

x

where u(x) and v(x) are vectors that depend on the estimation

site x and A is a matrix that depends on the experimental design

but not on x. Recall that if L and M are any two matrices such

that the products LM and ML are defined, then tr(LM) = tr(ML),

where tr denotes the trace of a matrix. Applying this identity

and some simple algebra, we can rewrite (4.4) as:

Su'(x) A v(z) w(x) d - trLA f V(z) u'(z) w(x) dxj.
x x

(4.5)

-15-



The integral on the right-hand-side of (4.5) involves the

experimental design only through vectors of the form r(x) and is

much more amenable to analysis than the integral in (4.4).

A statistically intuitive expression for AWEV can be written

using the above identity and the standard statistical expectation

operator. Let T denote a random vector with probability density

function w(x). Then:

O-2AWEV = tr1(X'3K1-X)- 1Etf(T)f'(T)jI + rE{R(T,Y)f (4.6)

- 2Ttr[K'I1(x'K-Ix)-IEff()r'(T)IJ

- 2 tr[(-'-

where N = I + TR and the expectations are taken with respect to

the distribution of T.

5. AWEV FOR 2k-p DESIGNS

In this section we consider the explicit calculation of the

AWEV criterion for two-level factorial and fractional factorial

designs. Since AWEV is proportional to the experimental error

variance a2, we will assume throughout this section and the

remainder of the paper that 02 = 1.

In order to calculate AWEV we must specify a weight tfnction

w(x) and we will use a standard multivariate normal density for

this purpose:

w(x) - (2I)
-k /2 exp(-x'z/2). (5.1)

It is important to point out the assumptions made in adopting (5.1)

since they will not be appropriate for every experiment. The choice

-16-
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of a suitable weight function must depend on the units of

measurement for the factors. Use of (5.1) implies that these units

have been standardized so that the origin is the center of the

immediate region of interest and so that the experimenter's interest

falls off in a symmetric fashion with increasing distance from the

origin. With respect to each individual factor, interest is

concentrated on settings between -1 and +1 and is negligible for

settings below -3 or above +3. We assume, then, that the factors

themselves have been scaled by the experimenter to reflect his

region of interest. A crucial point is that we regard this scaling

as distinct from the question of design scaling: that the

experimenter can standardize the units to match his region of

interest does not answer the question of where to place the design

points.

Having stated a weight function, we must now evaluate the

integrals in (4.6). We first state a general result and then apply

it to the special case of 2k
-P designs.

Lemma: Let T - (TI, .... ,Tk ) be a random vector with a

multivariate normal (0,I) distribution. Let

f(T) - (I,T ....,Tk)' and

r(T) -(R(T,zl) ...... ,R(T,Sn))',

where x, ...... , n  are points in k-dimensional Euclidean space and,

for any two points u and v,

- 17 -
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expj-(u-V)'(u-v)w 2/2(1-w 2 ) + u'vw/(l+w)
R(U,#) = 2 k2-1-wu.

(1 - )

Then the integrals in (4.6) are given by:

(i) Elf(T)f'(T)} = 1 "k

(ii) E{R(T,T)} = (1 - w)-k - 1 - wk

(iiia) EIf(T)r'(T)jiii = ER(T,xi)I = 0

(iiib) E{f(T)r'(T)j,+Ii = E{TjR(T,xi)} = 0

(iv) Eir(T)r'(T)Ii,j = E{R(T,.i)R(T,xj)

expi-(Zi-x.)'(x i -x.)w 4 /2( 1-w 4 ) + X 'x.W2/(I+w2

( - w4 ) k/2

-w- w2xi'Z

R(xi,j;w
2 )•

We can use the results of the lemma to compute (4.6) when the

experimental design is a 2k
-p (fractional) factorial with the

factors set at ±d, so that d is our design scale parameter. It

is clear from the lemma that, for any design, the third term of

(4.6) is zero:

-18-



trLK'IX(Z'3'1) 1 -.1 ir' (Y)}J - 0.

An additional simplification for factorial designs is also

helpful. From considerations of symmetry, the matrix whose trace

must be computed in the final term of (4.6) must have all its

diagonal elements equal to one another. Thus, only the first column

of Ejr(T)r'(T)} need be computed. If the design also includes

center replicates, the final term of (4.6) will require computation

of two terms, one corresponding to a point on the cube and one to a

center point.

To illustrate the above results, consider scaling a 23 design

with bias parameters set at T - 1 and w - 0.4. We computed AWEV

for d - 0.05 (0.05) 3.001 the computations were performed using

the 14ATLAB matrix laboratory package (see Moler 1981) and, along

with computations for 9 additional settings of T, required about

12.5 minutes of CPU time on the VAX 780 computer at the Mathematics

Research Center at the University of Wisconsin. The percent

efficiencies are graphed in Figure 3. The minimal value of AWEV,

about 2.721, is achieved at approximately d - 1.17. The

efficiency remains high for a fairly broad range of designs, but

drops off as the design points are brought in too close to the

origin or as they are moved too far away, a conclusion consistent

with common experimental wisdom. If, on the other hand, we were to

assume that no bias were present (T - 0), AWEV would be a monotone

decreasing function of d, reaching a minimum of .125 at

d - .. The design with d - 1.17 would have a much lower AWEV

- 19-
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value (.399) but would be only 31.3% efficient.

To study sensitivity with respect to the prior, profiles

similar to Figure 3 were generated for a variety of combinations of

the parameters T and w. The values of T were equally spaced on

a log scale and reflect a range of situations from little bias

relative to experimental error through substantial bias relative to

experimental error; the values of w were w - 0.1 (0.1) 0.8. For

each parameter combination, as in Figure 3, a range of designs was

found to have reasonably high efficiency and efficiency was low for

both low and high values of d.

In Figure 4, 90% and 75% efficiency ranges are plotted as a

function of T for w - 0.2, 0.4, 0.6, and 0.8. Highlighting the

range of high efficiency designs, rather than just the "optimal"

design, allows us to find designs that perform well across a variety

of possible experimental conditionsl i.e., to find designs that are

robust with respect to the prior distribution. It is clear from

Figure 4 that an efficient choice of scale for a 23 design is quite

insensitive to the prior. Choosing d anywhere between 1.1 and 1.6

scales the design efficiently for almost all the parameter

combinations considered. Moreover, the slight dependence of the

choice of scale on the prior can be easily summarized: the less

severe the bias is feared to be, the larger the scale should be.

But even for the least severe case of bias here (T = 1/32,

w - 0.2), choosing d greater than 3 is quite inefficient. For the

most severe case (T - 16, w - 0.8), small choices of d are
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relatively efficient, but choosing d as large as 1.6 also retains

high efficiency.

It is also informative to examine the AWEV values that an

efficient design is able to obtain, since this provides useful

information on how precisely the response function can be

estimated. The AWEV values, unlike percent efficiency, are quite

sensitive to the choice of the prior. When the bias is assumed to

be slight, AWEV for the most efficient designs differs only slightly

from the AWEV value that those designs would obtain in a model

without an explicit bias term. For example, with T - 1/32 and

w = 0.1, the minimum AWEV is .205, obtained when d = 2.57. For

the *no bias" model, this design has AWEV = .182. For choices of

scale smaller than 2.57, the effect of bias on AWEV is almost

negligible, but for larger choices, bias becomes substantial and

AWEV is much larger than in the "no bias" model. When the model

includes a large bias term, the results are quite different. When

1 and w - 0.8, for example, the minimum AWEV is 125.88 when

d - 0.88, much greater than in the "no bias" model.
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6. SCALING 2k-p FACTORIAL DESIGNS

In this section we describe specific recommendations of the

AWEV criterion for 2 k-p factorial designs in terms of efficient

choices of the design scale parameter d, which specifies the

factor settings in units standardized to reflect a multivariate

normal (0,I) weight function. We limit our discussion to designs

with a maximum of 16 factorial runs (with and withcut added center

replicates) and a maximum of eight factors, which we believe

includes many of the most popular two-level fractional factorial

designs. Table 1 lists all the designs considered along with the

defining contrasts for the fractional factorials. For each design,

we computed AWEV and percent efficiency as a function of d for

prior specifications in which T ranged from 1/32 through 16

and w = 0.2, 0.4, 0.6, and 0.8.

The results for all of the designs studied follow the same

general pattern: a range of scale choices roughly between 0.8

and 1.6 is reasonably efficient for almost all the priors

considered but both high and low values of d lead to low

efficiency. Percent efficiency is rerarkably robust with respect to

the prior specification for all the designs studied. Thus precise

prior knowledge of the bias parameters is not necessary to obtain an

efficient design. Table 1 lists, for each design, the range of

scale settings that is at least 75% efficient for all the choices

of T, from 1/32 through 16, when w - 0.4. Even though these

bias conditions differ by a factor of 500, there is always a
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reasonable range of designs that is efficient across the entire

spectrum.

As the extent of bias in the model increases, the range of

efficient designs is typically pulled in toward the origin. If, for

a fixed value of w, T is made extremely small, only large choices

of scale lead to efficient designs, since the bias term in the model

is effectively suppressed. Making T extremely large, on the other

hand, does not have the effect of severely shrinking the range of

efficient designs in to the origin. Rather, we find an asymptotic

behavior in which increasing T beyond a certain point ceases to

have any effect at all on the percent efficiency of d. Choosing

d between 1 and 1.5, for example, rarely results in a design

that is less than 75% efficient because it is too far from the

origin. Over the range of bias specifications that we studied, the

efficient choices of scale are more similar to those for large T

than those for small T.

The actual values of AWEV are quite sensitive to the prior

specification and we might interpret this dependence in two rather

different ways. One possible conclusion is that even the most

efficient designs are able to provide little information when bias

is severe. If so, then the correct decision might be to increase

the number of runs, or to use a more flexible graduating function,

such as a quadratic, or to limit the region of interest to one in

which (1.2) is thought to be a better approximation, or perhaps to

scrap the experiment altogether. Alternatively, since (2.2)-(2.3)

-25-



Table I

Listed below are the 2k-p designs studied along with their defining

contrasts and the range of scale settings that result in designs of

at least 75% efficiency for all values of T between 1/32 and

16 when w = 0.4.

Design Contrasts 75% Efficiency Range

4 Runs

22 1.19-1.50

23-1 I=ABC 1.08-1.33

8 Runs

23 1.09-1.49

24-1 I=ABCD 0.98-1.37

25-2 I=ABD=ACE 0.87-1.28

26-3 I=ABD=ACE=BCF 0.78-1.20

27-4 I=ABD=ACE-BCF=ABCG 0.71-1.15

16 Runs

24 0.96-1.49

25-1 I=ABCDE 0.86-1.41

26-2 I-ABCE=BCDF 0.75-1.34

27-3 I-ABCE=BCDF=ACDG 0.66-1.28

28-4 I=ABCE-BCDF-ACDG=ABDH 0.58-1.24
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measures bias proportionally to experimental error, the magnitude of

the bias term will increase if more precise measurement is able to

decrease experimental error. In this case it would be misleading to

compare AWEV values for different priors under the assumption that

02 is equal, since the smaller value of a2 corresponding to the

model with greater bias will compensate for the difference in AWEV.

Adding an extra factor It is interesting to examine the effect

on AWEV of increasing the number of factors in the design with a

fixed number of runs. We would expect the average estimation

variance to increase, because we are attempting to study a much

larger space with the same number of experiments. For the "no bias"

case (T - 0), AWEV reduces to average weighted least squares

variance. Here it is easy to show that the ratio of AWEV for a

2 (k+1)-
(p+1) design with scale parameter d to a 2k-p design with

scale parameter d is:

(d2 + k + 1)/(d2 + k),

which implies that there is a noticeable increase only for designs

that are too close to the origin. For designs with d large, there

is almost no loss of precision at all in adding an extra factor to

the experiment. The Bayesian model, however, suggests that when

bias is present, there may be a much greater price to pay for adding

an extra factor. For example, with w - 0.4 and T - 1, the

minimal value of AWEV for a 24-1 design is 6.07 when d - 0.98. The

corresponding 23 design has AWEV of 2.86, less than half as great

and much less than the above ratio would indicate. Adding a fifth
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factor to the experiment would further increase AWEV to 12.64 and

adding a sixth factor would increase AWEV to 23.54. (Despite the

increase in AWEV, all these designs are at least 95% efficient.)

This pattern is consistent throughout the 8 and 16 run designs. The

loss in accuracy from adding an extra factor is most severe when the

bias is severe. Thus we recommend limiting the number of factors

under consideration when it is feared that there may be substantial

bias.

Adding an extra factor also affects the range of efficient

scale choices. As can be seen from Table 1, increasing the degree

of fractionation tends to pull the range of efficient designs

slightly in toward the origin.

Center points It is often recommended that center replicates

be added to two-level response surface experiments as a check on the

presence of pure quadratic terms and in order to obtain a pure error

estimate of a2. The effect of center replicates on the AWEV

criterion depends on how the factorial points have been scaled.

When d is small and AWEV is dominated by variance rather than

bias, adding a center replicate has little effect. When d is

large, however, adding a center replicate can reduce AWEV

dramatically. Recall that with the Bayesian model proposed here,

observations contribute the most information to inferences made at

nearby factor combinations. The effect of a center point on AWEV is

substantial only when the factorial points are spread so far apart

that they provide little information near the origin.
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Adding a center replicate results in only a slight decrease in

AWEV for the most efficient choices of scale. Only for larger (and

typically inefficient) choices of scale is there a large decrease.

A beneficial consequence is that the range of efficient designs

includes larger values of d and is wider than when no center

points are present. Thus including a center point does provide

additional robustness with respect to the prior. Adding additional

center replicates has only a slight effect in further reducing AWEV.

It is important to remember that an experimental design must

satisfy a number of different criteria, of which AWEV reflects but

one. we think that the importance of obtaining a pure error

estimate of a2 is a compelling reason to include several center

replicates. The value of a pure error estimate is its independence

of any assumptions about the functional dependence of the response

variable on the explanatory variables, a property that is especially

important for approximate models such as those used here.

7. DISCUSSION

Our conclusions with respect to scaling two-level factorial

experiments can be easily summarized: model robust 2k
-p designs can

be achieved by choosing the scale of the design slightly wider than

the scale of the experimenter's weight function. If bias is feared

to be especially severe, the design should be pulled in toward the

origin, while if bias is suspected to be minimal, the design should

be spread out slightly. Importantly, model robust designs are not
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highly sensitive to the assumptions about the extent of bias --

large changes in the severity of bias result in only slight changes

in the efficient choice of scale. Our conclusions about choice of

scale are similar to those of Box and Draper (1959,1963) who

advocated "all bias" designs, in which the design scale is chosen to

exactly match the weight function. Our conclusions differ

substantially, however, from the implication that scale should be as

large as possible which results when it is assumed that an empirical

model such as (1.2) is an exact representation of the response

function.

We have achieved model robustness by using a Bayesian model to

represent represent uncertainty about the nature of the true

response function. Experimental design must, necessarily, be based

on the experimenter's prior knowledge and we think that the Bayesian

model offers a natural vehicle to explicitly state prior beliefs

about model adequacy. The questionable advice to choose scale as

large as possible can thus be seen as a correst conclusion for the

implausible prior belief that no bias is present. We have shown

that more realistic priors which include bias lead to more sensible

conclusions.

Our results in Section 6 on scaling 2k
- P designs, although

mathematically exact, should be regarded as a guide to choosing an

experimental design rather than a prescription. We would be

surprised indeed if two scientists, faced with the same problem,

arrived at the same list of important factors, assigned them the
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same standardized units of measurement, and gave an identical

assessment of the bias associated with using a first degree

polynomial approximation over the corresponding region of

interest. These elements, all of which have an important influence

on the final design, must be supplied by the experimenter. The

purpose of the methodology presented here is to help the

experimenter understand how his region of interest, his prior

assumptions about the extent of bias, the number of factors studied,

and the extent of fractionation desired should be reflected in the

way he scales the design.

I.
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